Abstract

Thioautotrophic endosymbionts in the Domain Bacteria mediate key sulfur transformations in marine reducing environments. However, the molecular pathways underlying symbiont metabolism and the extent to which these pathways are expressed in situ are poorly characterized for almost all symbioses. This is largely due to the difficulty of culturing symbionts apart from their hosts. Here, we use pyrosequencing of community RNA transcripts (i.e., the metatranscriptome) to characterize enzymes of dissimilatory sulfur metabolism in the model symbiosis between the coastal bivalve Solemya velum and its intracellular thioautotrophic symbionts. High-throughput sequencing of total RNA from the symbiont-containing gill of a single host individual generated 1.6 million sequence reads (500 Mbp). Of these, 43,735 matched Bacteria protein-coding genes in BLASTX searches of the NCBI database. The taxonomic identities of the matched genes indicated relatedness to diverse species of sulfur-oxidizing Gammaproteobacteria, including other thioautotrophic symbionts and the purple sulfur bacterium Allochromatium vinosum. Manual querying of these data identified 28 genes from diverse pathways of sulfur energy metabolism, including the dissimilatory sulfite reductase (Dsr) pathway for sulfur oxidation to sulfite, the APS pathway for sulfite oxidation, and the Sox pathway for thiosulfate oxidation. In total, reads matching sulfur energy metabolism genes represented 7% of the Bacteria mRNA pool. Together, these data highlight the dominance of thioautotrophy in the context of symbiont community metabolism, identify the likely pathways mediating sulfur oxidation, and illustrate the utility of metatranscriptome sequencing for characterizing community gene transcription of uncultured symbionts.

Highlights

  • Symbioses between thioautotrophic bacteria and invertebrates perform important steps in the marine sulfur cycle

  • The taxonomic identities of the matched genes indicated relatedness to diverse species of sulfur-oxidizing Gammaproteobacteria, including other thioautotrophic symbionts and the purple sulfur bacterium Allochromatium vinosum. Manual querying of these data identified 28 genes from diverse pathways of sulfur energy metabolism, including the dissimilatory sulfite reductase (Dsr) pathway for sulfur oxidation to sulfite, the adenosine-5 -phosphosulfate (APS) pathway for sulfite oxidation, and the Sox pathway for thiosulfate oxidation

  • Reads matching sulfur energy metabolism genes represented 7% of the Bacteria mRNA pool. These data highlight the dominance of thioautotrophy in the context of symbiont community metabolism, identify the likely pathways mediating sulfur oxidation, and illustrate the utility of metatranscriptome sequencing for characterizing community gene transcription of uncultured symbionts

Read more

Summary

Introduction

Symbioses between thioautotrophic bacteria and invertebrates perform important steps in the marine sulfur cycle In these associations, bacteria living intra- or extra-cellularly with a eukaryotic host oxidize reduced sulfur compounds as an energy source for autotrophic CO2 fixation, providing a substantial source of fixed carbon for the host (Cavanaugh et al, 2006; Dubilier et al, 2008). In reducing habitats (e.g., anaerobic sediments, hydrothermal vents, hydrocarbon seeps), these symbioses may dominate the biomass, playing critical roles in local primary production and sulfur transformations (Sievert et al, 2007) Despite their ubiquity and ecological importance, thioautotrophic symbioses are poorly described molecularly. Methods that measure gene transcription (transcriptomics) and translation (proteomics) can provide more direct descriptions of symbiont function and metabolism, if administered under in situ conditions (Markert et al, 2007; Harada et al, 2009; Wilmes and Bond, 2009)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call