Abstract

BackgroundDietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. To date, the gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Therefore, we investigated the functional response of colonic microbiota to different dietary fibers in pigs through metatranscriptomic analysis.ResultsThe results showed that the microbial composition and CAZyme structure of the three experimental groups changed significantly compared with the control group (CON). Based on a comparative analysis with the control diet, RPS increased the abundance of Parabacteroides, Ruminococcus, Faecalibacterium and Alloprevotella but decreased Sutterella; INU increased the relative abundance of Fusobacterium and Rhodococcus but decreased Bacillus; and PEC increased the relative abundance of the Streptococcus and Bacteroidetes groups but decreased Clostridium, Clostridioides, Intestinibacter, Gemmiger, Muribaculum and Vibrio. The gene expression of CAZymes GH8, GH14, GH24, GH38, GT14, GT31, GT77 and GT91 downregulated but that of GH77, GH97, GT3, GT10 and GT27 upregulated in the RPS diet group; the gene expression of AA4, AA7, GH14, GH15, GH24, GH26, GH27, GH38, GH101, GT26, GT27 and GT38 downregulated in the INU group; and the gene expression of PL4, AA1, GT32, GH18, GH37, GH101 and GH112 downregulated but that of CE14, AA3, AA12, GH5, GH102 and GH103 upregulated in the PEC group. Compared with the RPS and INU groups, the composition of colonic microbiota in the PEC group exhibited more diverse changes with the variation of CAZymes and Streptococcus as the main contributor to CBM61, which greatly promoted the digestion of pectin.ConclusionThe results of this exploratory study provided a comprehensive overview of the effects of different fibers on nutrient digestibility, gut microbiota and CAZymes in pig colon, which will furnish new insights into the impacts of the use of dietary fibers on animal and human health.

Highlights

  • Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health

  • Overview of the metatranscriptomes After removing the host-related sequences from clean reads, on the average, 100 million raw sequence reads were obtained from the metatranscriptome of each sample, and a total of 210.09 Gbp of high-quality sequences were generated from 16 samples after removing the adapters and quality filtering

  • Principal coordinate analysis (PCoA) based on Bray-Curtis distances showed that the colonic luminal digesta samples in the PEC group were clustered distinctly from those in the other groups, and INU samples was clearly segregated from control samples

Read more

Summary

Introduction

Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. The gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Dietary fibers are defined as the oligosaccharides, polysaccharides and derivatives that cannot be digested by the digestive enzymes into absorbable components in the small intestine but can be partly fermented by bacteria in the large intestine [1]. Dietary fibers are widely considered to be beneficial to health as they produce vitamins, short-chain fatty acids (notably butyrate) and other nutrients through microbial fermentation while facilitating weight management and boosting gut health [4]. The gene expression profiles of CAZymes in the gut microbes of pigs are not well understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call