Abstract

The silylation of a phosphine of OsH6(PiPr3)2 is performed via net‐metathesis between Si−C(sp n ) and H−C(sp3) σ‐bonds (n=2, 3). Complex OsH6(PiPr3)2 activates the Si−H bond of Et3SiH and Ph3SiH to give OsH5(SiR3)(PiPr3)2, which yield OsH4{κ1‐P,η2‐SiH‐[iPr2PCH(Me)CH2SiR2H]}(PiPr3) and R−H (R=Et, Ph), by displacement of a silyl substituent with a methyl group of a phosphine. Such displacement is a first‐order process, with activation entropy consistent with a rate determining step occurring via a highly ordered transition state. It displays selectivity, releasing the hydrocarbon resulting from the rupture of the weakest Si‐substituent bond, when the silyl ligand bears different substituents. Accordingly, reactions of OsH6(PiPr3)2 with dimethylphenylsilane, and 1,1,1,3,5,5,5‐heptamethyltrisiloxane afford OsH5(SiR2R′)(PiPr3)2, which evolve into OsH4{κ1‐P,η2‐GeH‐[iPr2PCH(Me)CH2SiR2H]}(PiPr3) (R=Me, OSiMe3) and R′−H (R′=Ph, Me). Exchange reaction is extended to Et3GeH. The latter reacts with OsH6(PiPr3)2 to give OsH5(GeEt3)(PiPr3)2, which loses ethane to form OsH4{κ1‐P,η2‐GeH‐[iPr2PCH(Me)CH2GeEt2H]}(PiPr3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.