Abstract
Metasurfaces are ultrathin, two-dimensional structures composed of periodic or quasi-periodic arrays of sub-wavelength scatterers. They possess the unique ability to comprehensively control the phase, amplitude and polarization of incident electromagnetic waves with added advantages such as ease of fabrication and less space consumption. On account of these factors, they are progressively replacing their three-dimensional counterparts, i.e. metamaterials in a wide gamut of fields such as signal multiplexing, stealth technology, holographic imaging, planar optical devices, polarization transformation devices and so on. Further, metasurfaces offer a strong and promising platform for aerospace applications due to their diversified functionalities and reduced weight penalties. Moreover, it has been widely used for the realization of thin, broadband and polarization independent radar absorbing structures (RAS). In this regard, this paper presents a concise review on the recent advancements in the field of metasurfaces specifically for stealth applications. Special emphasis has been laid on diffusion and coding metasurfaces due to their attractive properties towards the realization of low observable platforms. Furthermore, various types of metasurfaces as well as the different techniques used for the optimization of metasurfaces are also described in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.