Abstract

The desire for battery longevity and ubiquitous wireless charging of mobile devices is driving researchers to explore divergent strategies to extract and harness energy from ambient radio frequency (RF) signals. Different rectenna designs to convert or rectify energy from electromagnetic (EM) signals into direct current (DC) have been explored for wireless power transfer (WPT) and wireless energy harvesting (WEH). However, these rectennas are characterized by low energy capturing and RF-to-DC conversion deficiencies, complex rectifier design, and bulky size. Recently, man-made materials such as metasurfaces with unique EM properties have emerged to address these limitations of existing rectenna systems. This paper presents a comprehensive survey of not only the state-of-the-art advances in metasurface-aided WPT and WEH systems, but also their applications to emerging technologies for future wireless networks such as wireless powered communication network (WPCN), simultaneous wireless information and power transfer (SWIPT), and millimeter wave (mmWave) communication. Besides discussing the research challenges and opportunities, we also present our proposed approach of harnessing metasurface technology to enhance end-to-end energy delivery in future wireless networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.