Abstract

Metasurface absorbers (MAs) have attracted widespread interest in the recent study of subwavelength artificial optical metasurfaces, although most reported MAs suffer from the actualities of costly and time-consuming fabrications, narrow working bandwidth, polarization-dependent responses, etc., somewhat limiting their practical applications. Herein, we introduce a facile and low-cost method to fabricate MAs with excellent absorption performances via the self-assembly of synthesized Au nanoclusters (NCs) on a Au film spaced by a nanoscale-thick dielectric SiO2. Interestingly, the proposed MAs with well-designed Au film-coupled Au NCs (i.e., an appropriate surface coverage of Au NCs and the compatible thickness of the SiO2 spacer) exhibited a measured average absorbance above 90% within a broad UV-vis wavelength band (200-800 nm). In addition, owing to the MAs' topological symmetry, their UV-vis absorption behaviors presented polarization insensitivity with the incident light angles ranging from 20 to 50°. It has been demonstrated that the excited different surface plasmon resonance modes between Au NCs and the adjacent Au film were vital; in addition, the light-trapping effects from "V"-shaped structures of Au NCs were favorable for the designed MAs with enhanced light absorption. We believe that such MAs and the potential self-assembly fabrication strategy may facilitate scalable optical applications such as photothermalvoltaics, ultraviolet protection, optical storage, and sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.