Abstract

We show that metastatic breast cancer cells are quantitatively identifiable from benign cells during adherence onto soft, elastic gels. We identify differences in time-dependent morphology and strength of adherence of single breast cells that are likely related to their malignancy and metastatic potential (MP). Specifically, we compare high and low MP breast cancer cells with benign cells as a control on collagen-coated, polyacrylamide gels with Young's modulus in the physiological range of 2.4-10.6 kPa. We observe that the evaluated metastatic breast cancer cells remain rounded, with small contact area, up to 6.5 h following seeding. In contrast, the benign cells spread and become more elongated on stiffer gels. We identify measurable differences in the two-dimensional, lateral, traction forces exerted by the cells, where the rounded, metastatic cells apply significantly larger, traction forces, as compared to the benign cells, on gels stiffer than 2.4 kPa. The metastatic cell lines exhibited gel-stiffness-dependent differences in traction forces, strain energies, and morphologies during the initial stages of adhesion, which may relate to their MP or invasiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.