Abstract

NME1 (also known as NM23-H1) was the first identified tumor metastasis suppressor, which has been reported to link with genomic stability maintenance and cancer. However its underlying mechanisms are still not fully understood. Here we find that NME1 is required for non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Mechanistically, NME1 re-localizes to DNA damage sites in a Ku-XRCC4-dependent manner, and regulates downstream LIG4 recruitment and end joining efficiency. Furthermore, we show that the 3′-5′ exonuclease activity of NME1 is critical for its function in NHEJ. Taken together, our findings identify NME1 as a novel NHEJ factor, and reveal how this metastasis suppressor promotes genome stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.