Abstract

In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical “leadership” pattern, and in “cognitive” terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves “as if” it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting.

Highlights

  • Reviewed by: Michelle Dow Keawphalouk, Harvard/MIT, USA Claudia Cormio, National Cancer Research Institute “Giovanni Paolo II,” Italy

  • We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting

  • We propose to adopt a very simple formal model of human interaction and small group dynamics in order to investigate the structural constraints that should support the described phenomenology, in an attempt to address the following issues: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? A word of caution is required with respect to the nature of the model we adopt to describe interactions in the group

Read more

Summary

A MULTIDISCIPLINARY APPROACH TO THE STUDY OF THE HUMAN GROUP DYNAMICS

The recent and fruitful convergence between psychology and complex system science, already provided a new generation of mathematical models and frameworks to study the cognitive group dynamics. In order to reduce the complexity of the system taken into account (i.e., the human groups) the common and fundamental step of such research has been to identify a minimal set of microscopic variables, that capture the relevant mesoscopic representation of the macroscopical dynamics under scrutiny. By adopting a multidisciplinary perspective incorporating psychology, sociology, physics of complex systems and computer sciences, Sociophysics developed a modeling approach to reach the mesoscopic approximation of the human systems that is able to capture the interactions between microscopical processes (e.g., psychological and cognitive models and theories), and the macroscopical and observable relevant dimensions (e.g., behaviors, opinions, social norms, and their dynamical features). In an effective way, the dynamical interaction between the incoming (i.e., new/external) information and the knowledge of the decision-maker

THE AGENTS AND THE PARAMETERS
THE MODEL
A NUMERICAL RECIPE FOR THE GROUP SIMULATION
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call