Abstract

AbstractWhen a heterogeneous catalyst is active, it forms metastable structures that constantly transform into each other. These structures contribute differently to the catalytic function. Here we show the role of different metastable oxygen species on a Ni catalyst during dry reforming of methane by combining environmental scanning electron microscopy, near ambient pressure X-ray photoelectron spectroscopy, on-line product detection and computer vision. We highlight the critical role of dissociative CO2 adsorption in regulating the oxygen content of the catalyst and in CH4 activation. We also discover rate oscillations during dry reforming of methane resulting from the sequential transformation of metastable oxygen species that exhibit different catalytic properties: atomic surface oxygen, subsurface oxygen and bulk NiOx. The imaging approach allowed the localization of fluctuating surface regions that correlated directly with catalytic activity. The study highlights the importance of metastability and operando analytics in catalysis science and provides impetus towards the design of catalytic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call