Abstract

ABSTRACTWhen ice Ih in an emulsion is compressed below 250 K, it melts to supercooled liquid water, avoiding the formation of other crystal phases. Here, we create emulsified high-pressure ices under high pressure and low temperature, and measure their temperature while these ices are decompressed at a constant rate at different temperatures. We detect metastable melting points of high-pressure ices, and identify their melting lines. We find what could be possibly two new ice phases, and discuss the relationship between decompression-induced melting and decompression-induced amorphization. Finally, we discuss briefly the analysis of experimental data and simulation results that are consistent with the hypothesized “second critical point” with temperature and pressure coordinates of approximately 200 K and 100 Mpa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.