Abstract
In general liquid-liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid-liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory-Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer-solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.