Abstract
Metastable intermediates represent a non-equilibrium state of matter that may impose profound impacts to materials properties beyond our understandings of monolithic and equilibrium systems. Here, we report a discovery of hidden metastable intermediates in amorphous TiO2 thin films and their critical role in electrochemical damage. These intermediates have a non-bulk crystal-like structure and exhibit significantly higher electrical conductivity than both the amorphous and the crystalline phases. When these TiO2 films are applied to protect Si photoelectrochemical (PEC) photoanodes, the intermediates can induce localized high electrical currents that largely accelerate the etching of the TiO2 film and the Si electrode underneath. The intermediates can be effectively suppressed by raising their nucleation barrier via reducing the film thickness from 24 to 2.5 nm. The homogeneous amorphous TiO2-film-coated Si photoanodes achieved more than 500 h of PEC water oxidation at a steady photocurrent density of over 30 mA·cm-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.