Abstract
In this paper we propose and demonstrate that the ultrafast nonlinear optical response of atoms may be accurately calculated in terms of metastable states obtained as solutions of the stationary Schrodinger equation including the quasi-static applied electric field. We first develop the approach in the context of an exactly soluble one-dimensional atomic model with delta-function potential, as this allows comparison between the exact ultrafast nonlinear optical response and our approximate approach, both in adiabatic approximation and beyond. These ideas are then applied to a three-dimensional hydrogen-like atom and yield similar excellent agreement between the metastable state approach and simulations of the Schrodinger equation for off-resonant excitation. Finally, our approach yields a model for the ultrafast nonlinear optical response with no free parameters. It can potentially replace the light–matter interaction treatment currently used in optical filamentation, and we present a numerical example of application to femtosecond pulse propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.