Abstract

AbstractA model of metastable defect formation via H-rebonding in hydrogenated amorphous silicon is developed where the defect density and defect formation energy are controlled by the bond-length disorder of the material. Dangling bond defects are created by H motion from SiH bonds to weak Si-Si bonds. The model predicts formation energies for thermal and light-induced defects in good agreement with experiment. The relaxation of thermal equilibrium defects is stretched exponential, with stretch parameters varying approximately linearly with temperature and relaxation times that are thermally activated- in good agreement with experiment. The annealing of light-induced defect densities also shows relaxation behavior. The model accounts for barriers of ≈ 1.5 eV for H diffusion. The energetics of the H*2 complex will also be discussed. The rms bond-length deviation is a new parameter that controls the quality of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call