Abstract

The rapid solidification associated with additive manufacturing (AM) leads to complex microstructures with peculiar features amongst which cellular solidification structures are the most remarkable. These metastable structures possess a clear segregation pattern dictated by the solidification pathway of the alloy and are bounded by dislocation walls. While they confer exceptional strength and ductility to AM 316L stainless steel, their effect on localized corrosion in chloride environments remains to be established. Here, we employ correlative electron microscopy to reveal coupled chemical, electrochemical, and crystallographic effects on localized corrosion attack and its development. We show that the Cr and Mo-depleted interior of the cellular solidification structures dissolves selectively, giving rise to an intricate damage morphology, that is directly related to the underlying crystallographic orientation. Whereas surface observations only reveal apparently shallow micrometer-size cavities, 3D tomography via focused ion beam serial-sectioning shows a high degree of connectivity between these features underneath the surface. We reveal this intricate morphology, propose a formation mechanism, and discuss alloy design guidelines to mitigate this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.