Abstract

Ab initio computations are carried out to explore the structure and stability of FNgEF3 and FNgEF (E = Sn, Pb; Ng = Kr-Rn) compounds. They are the first reported systems to possess Ng-Sn and Ng-Pb bonds. Except for FKrEF3, the dissociations of FNgSnF3 and FNgEF, producing Ng and SnF4 or EF2, are only exergonic in nature at room temperature, whereas FNgPbF3 has a thermochemical instability with respect to two two-body dissociation channels. However, they are kinetically stable, having positive activation barriers (ranging from 2.2 to 49.9 kcal mol(-1)) with respect to those dissociations. The kinetic stability gradually improves in moving from the Kr to Rn analogues. The remaining possible dissociation channels for these compounds are found to be endergonic in nature. The nature of the bonding is analyzed by natural bond order, electron density, and energy decomposition analyses. Particularly, the natural population analysis reveals that they are best represented as F(-)(NgEF3)(+) and F(-)(NgEF)(+). All the Xe/Rn-E bonds in FNgEF3 and FNgEF are covalent in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.