Abstract
We study the spatial distribution of the metastable-state argon atoms in high density helicon plasmas by means of laser-induced fluorescence. It is observed that the neutral argon in metastable-state has an anomalous radial distribution in density; it has a caldera-like shape radially, which is rare in typical low-temperature plasmas such as inductively coupled plasmas wherein the density increases toward the discharge center, as previously reported. The formation of the distribution can be explained as it forms by the combined effects of significant neutral depletion in high plasma density, off-axis electron-density distribution, and increasing diffusive loss toward the wall. To establish the assertion with the underlying physics, we calculate a simple global model and obtain the neutral density distribution in metastable-state under various conditions. The calculated results qualitatively agree with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Current Applied Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.