Abstract

The ubiquitous nature and unusual properties of water have motivated many studies on its metastability under temperature- or pressure-induced phase transformations. Here, nanosecond compression by a high-power laser is used to create the nonequilibrium conditions where liquid water persists well into the stable region of ice VII. Through our experiments, as well as a complementary theoretical-computational analysis based on classical nucleation theory, we report that the metastability limit of liquid water under nearly isentropic compression from ambient conditions is at least 8GPa, higher than the 7GPa previously reported for lower loading rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.