Abstract

Light-induced metastability in hydrogenated nanocrystalline silicon (nc-Si:H) single-junction solar cells was studied systematically. First, we observed no light-induced degradation when the photon energy was lower than the band gap of the amorphous phase; degradation occurred when the energy was higher than the band gap in the amorphous phase. The light-induced degradation could be annealed away at an elevated temperature. We concluded that the light-induced defect generation occurred mainly in the amorphous phase. Second, forward current injection did not degrade the nc-Si:H cell performance. However, a reverse bias during light soaking enhanced the degradation. Third, the nc-Si:H cells made with an optimized hydrogen dilution profile showed minimal degradation although these cells had a high amorphous volume fraction. This indicated that the amorphous volume fraction was not the only factor determining the degradation. Other factors also played important roles in the nc-Si:H stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call