Abstract

Observed major element metasomatism in 5 amphibolite facies ductile fault zones can be explained as the inevitable consequence of aqueous fluid flow along normal temperature gradients under conditions of local chemical equilibrium. The metasomatism does not require the infiltration of chemically exotic fluids. Calculations suggest that metasomatized ductile fault zones are typically infiltrated by ∼105 moles H2O/cm2, fluid flow is in the direction of decreasing temperature, and fluids contain about 1.0 molal total chloride. Where available, stable isotopic alteration data confirm both flow direction and fluid fluxes calculated from major element metasomatism. The fluid fluxes inferred from metasomatism do not require large-scale fluid recirculation or mantle sources if significant lateral fluid flow occurs in the deep crust. Time-integrated fluid fluxes are combined with estimates of flow duration to constrain average flow rates and average permeabilities. Rocks in ductile fault zones are probably much more permeable during metasomatism (average permeabilities of 10-17 to 10-15 m2) than rocks normally are during regional metamorphism (10-21 to 10-18 m2). Estimated average fluid flow rates (3.5×10-3 to 0.35 m/yr) are insufficient, however, to significantly elevate ambient temperatures within ductile faults. Fluid flow in the direction of decreasing temperature may increase the ductility of silicate rocks by adding K to the rocks and thereby driving mica-forming reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call