Abstract

Stress or stress-induced intestinal disturbances, especially diarrhea, are the main triggers for inflammatory bowel disease and irritable bowel syndrome. Diarrhea and intestinal inflammatory disease afflict patients around the world, and it has become a huge burden on the global health care system. Drinking sodium metasilicate-based alkaline mineral water (SM-based AMW) exerts a potential therapeutic effect in gastrointestinal disorders, including gut inflammation, and diarrhea, but the supportive evidence on animal studies and mechanism involved remain unreported. The maternally separated (MS) piglet (Newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infant. This study aims to determine whether drinking SM-based AMW confers diarrhea resistance in maternally separated (MS) piglets under weaning stress and what the underlying mechanisms are involved. 240 newly weaned piglets were randomly divided into the Control group and the sodium metasilicate pentahydrate (SMP) group. A decreased diarrhea incidence was observed in SMP treatment piglets. The intestine injury and activated stress hormones (COR and ACTH) induced by weaning was alleviated by SM-based AMW. This may be related to the improvement of intestinal microflora structure and function by SMP, especially the increase of s_copri abundance. Meanwhile, SMP maintained the integrity of the duodenal mucus barrier in MS piglets. Importantly, by targeting NF-κB inhibition via the microbiota-gut interaction, SM-based AMW alleviated intestinal inflammation, maintained fluid homeostasis by modulating aquaporins and fluid transporter expression, and enhanced barrier integrity by suppressing MLCK/p-MLC signaling. Therefore, drinking metasilicate-based alkaline mineral water confers diarrhea resistance in MS piglets via the microbiota-gut interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.