Abstract

We report on the investigation of contact metamorphism provoked by the emplacement of a shallow magma chamber during the Timanfaya eruption of Lanzarote from 1730 to 1736 AD. The study was carried out on metamorphic xenoliths from basaltic Timanfaya lavas, and shows how the primary basanitic magma was contaminated by sedimentary and metamorphic rocks. Mineralogical and chemical studies allowed the definition of several xenolith types. Silica xenoliths (quartz, tridymite, cristobalite or a mixture of these, constituting more than 50 % of the xenolith) and calc-silicate xenoliths (wollastonite, sometimes the 2M type, diopside, forsterite or mixture of these, constituting more than 50 % of the xenolith) are the most frequent. Other minerals recognized were calcite, dolomite, augite, enstatite, hypersthene, spinel and scapolite. The mineralogy and some textures of the metamorphic forsteritic xenoliths are identical to those found in ultrabasic xenoliths (dunites) and point to a possible metamorphic origin for some of them. Major and trace elements showed a diversity of composition, controlled by the mineralogy. The REE composition of the metamorphic xenoliths is high, compared with the sedimentary xenoliths not affected by metamorphism. The mineral assemblages define metamorphic facies of low, medium and high grade, depending on the distance of the sedimentary rocks from the magma chamber border. The IGPETWIN-MIXING program was used to verify the contamination process, taking the xenoliths as representative of the sedimentary/metamorphic rocks that were melted. The results indicated that sedimentary/metamorphic rock contamination of a basanitic magma can produce tholeiitic compositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.