Abstract

Most metapopulation models neglect the local dynamics, and systems characterized by slow population turnover, time lags and non-equilibrium, are only rarely examined within a metapopulation context. In this study we used a realistic, spatially explicit, dynamic metapopulation model of a long-lived grassland plant, Succisa pratensis, to examine the relative importance of local population dynamics, and short and long-distance dispersal of seeds. Using both vegetation composition and sowing experiments we identified 94 occupied and 43 unoccupied, but suitable, habitat patches in a 7-km 2 landscape. Local population dynamics were studied in permanent plots in five populations. Simulation results showed that the colonization and extinction dynamics of S. pratensis were slow with about one colonization or extinction per year and the time frame for the population system to attain equilibrium in a constant landscape was several thousands of years. Sensitivity analyses demonstrated that occasional long-distance dispersal had a large influence on population turnover rates whereas regular short-distance dispersal had little effect. Our model also allowed us to assess how demographic processes affect not only local population growth but also regional dynamics. Fecundity was more important, compared with growth and survival, in a metapopulation context than when considered only within populations. The effect of landscape development was examined through different land-use scenarios and suggested that S. pratensis only very slowly colonizes new habitats that are made available. Our results with S. pratensis in an agricultural landscape show that long-distance dispersal and colonization dynamics play an important role for the regional distribution in long-lived plants but that time lags, and thus the effect of landscape history, are also very important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.