Abstract

We show that the cross Wigner function can be written in the form [Formula: see text] where [Formula: see text] is the Fourier transform of ϕ and Ŝ is a metaplectic operator that projects onto a linear symplectomorphism S consisting of a rotation along an ellipse in phase space (or in the time-frequency space). This formulation can be extended to generic Weyl symbols and yields an interesting fractional generalization of the Weyl–Wigner formalism. It also provides a suitable approach to study the Bopp phase space representation of quantum mechanics, familiar from deformation quantization. Using the "metaplectic formulation" of the Wigner transform, we construct a complete set of intertwiners relating the Weyl and the Bopp pseudo-differential operators. This is an important result that allows us to prove the spectral and dynamical equivalence of the Schrödinger and the Bopp representations of quantum mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.