Abstract

The modifiability of neuronal response plasticity is called "metaplasticity." In suppressing synaptic inhibition and facilitating induction of long-term excitatory synaptic plasticity, endocannabinoids (eCBs) act as agents of metaplasticity. We now report the discovery of a calcium-dependent mechanism that regulates eCB mobilization by metabotropic glutamate receptor (mGluR) activation. The switch-like mechanism primes cells to release eCBs and requires a transient rise in intracellular Ca2+ concentration ([Ca2+]i) but not concurrent activation of mGluRs. Conversely, short-term, [Ca2+]i-dependent eCB release can be persistently enhanced by mGluR activation. Hence, eCBs are also objects of metaplasticity, subject to higher levels of physiological control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.