Abstract

The incidence of osteoporotic proximal tibial fractures has increased during the last 2 decades. A promising approach in osteoporotic fracture fixation is polymethylmethacrylate-based cement augmentation of implants to gain better implant purchase in the bone. This study investigates the biomechanical benefits of screw augmentation in less invasive stabilization system-proximal lateral tibial (LISS-PLT) plates in cadaveric extraarticular comminuted proximal tibial fractures (OTA-41-A3.3). Standardized extraarticular proximal tibial fractures were stabilized with the LISS-PLT plate in 6 paired osteoporotic cadaveric tibiae. Bone mineral density was measured with high-resolution, quantitative computed tomography scans to identify bone quality. In the augmented group, the 5 proximal screws of the LISS-PLT plate were augmented with 1 mL of bone cement each, whereas the contralateral tibia was instrumented conventionally as the control. Cyclic axial loading was applied to each specimen with a starting load of 150 N, using a ramp of 0.05 N per cycle to 10-mm axial displacement. Varus displacement was identified from anterior-posterior radiographs. Bone mineral density showed no significant difference between the 2 groups (P = 0.47). The nonaugmented group reached 9417 load cycles (SD 753) until failure, compared with 14,792 load cycles (SD 2088) in the augmented group (P = 0.002). In the early-onset failure (deformation at 8250 load cycles), varus displacement was significantly smaller in the augmented group (0.46 degrees, SD 0.6) than in the nonaugmented group (3.23 degrees, SD 1.7) (P = 0.01). This biomechanical study showed that cement augmentation of the LISS-PLT plate screws in osteoporotic proximal extraarticular tibial fractures significantly lowers the propensity toward screw migration and secondary varus displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.