Abstract

Metaphase I pairing of deficient chromosomes was analyzed in a set of 'Chinese Spring' (CS) wheat (Triticum aestivum L. em. Thell.) plants with varying lengths of deficiencies in the long arm of chromosome 4A (6, 8, 11, 17, 23, 34, 36, 39, and 50% missing), the long arm of chromosome 5B (49% missing), and the long arm of chromosome 2B (33% missing). Pairing in homologous chromosomes between deficient and complete arms was greatly reduced even by small differences in arm length. In deficiency homozygotes and in an isochromosome derived from a deficient 4AL arm, pairing of the two deficient arms was high and approached that of two complete arms. In plants where deficient and complete arms competed for pairing partners, pairing was exclusively between arms of the same length. These results suggest that in wheat, pairing initiation sites are distributed throughout at least the distal halves of the arms and that the alignment of telomeres may be critical for pairing success. Genetic mapping of the deficiency breakpoints was confounded by misdivision of unpaired chromosomes and abnormal transmission rates. Genetic distances between centromeres and breakpoints appeared to be proportional to metaphase I pairing frequencies.Key words: bread wheat, deficiency, chromosome pairing competition, mapping, telomere, pairing initiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.