Abstract

Thermobarometric estimates for Lesser and Greater Himalayan rocks combined with detailed structural mapping in the Modi Khola valley of central Nepal reveal that large displacement thrust-sense and normal-sense faults and ductile shear zones mostly control the spatial pattern of exposed metamorphic rocks. Individual shear zone- or fault-bounded domains contain rocks that record approximately the same peak metamorphic conditions and structurally higher thrust sheets carry higher grade rocks. This spatial pattern results from the kinematics of thrust-sense faults and shear zones, which usually place deeper, higher grade rocks on shallower, lower grade rocks. Lesser Himalayan rocks in the hanging wall of the Ramgarh thrust equilibrated at about 9 kbar and 580°C. There is a large increase in recorded pressures and temperatures across the Main Central thrust. Data presented here suggest the presence of a previously unrecognized normal fault entirely within Greater Himalayan strata, juxtaposing hanging wall rocks that equilibrated at about 11 kbar and 720°C against footwall rocks that equilibrated at about 15 kbar and 720°C. Normal faults occur at the structural top and within the Greater Himalayan series, as well as in Lesser Himalayan strata 175 and 1,900 m structurally below the base of the Greater Himalayan series. The major mineral assemblages in the samples collected from the Modi Khola valley record only one episode of metamorphism to the garnet zone or higher grades, although previously reported ca. 500 Ma concordant monazite inclusions in some Greater Himalayan garnets indicate pre-Cenozoic metamorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call