Abstract

The prosperous trend of deploying deep neural network (DNN) models to diverse hardware platforms has boosted the development of deep learning (DL) compilers. DL compilers take high-level DNN model specifications as input and generate optimized DNN executables for diverse hardware architectures like CPUs, GPUs, and hardware accelerators. We introduce MT-DLComp, a metamorphic testing framework specifically designed for DL compilers to uncover erroneous compilations. Our approach leverages deliberately-designed metamorphic relations (MRs) to launch semantics-preserving mutations toward DNN models to generate their variants. This way, DL compilers can be automatically tested for compilation correctness by comparing the execution outputs of the compiled DNN models and their variants without manual intervention. We detected over 435 inputs that can result in erroneous compilations in four popular DL compilers, all of which are industry-strength products maintained by Amazon, Facebook, Microsoft, and Google. We uncovered four bugs in these compilers by debugging them using the error-triggering inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.