Abstract

In the central Rhodope mountains of Greece a carbonate-bearing metaperidotite lens ∼ 200 × 500 m in size crops out as part of the high- to ultrahigh-pressure metamorphic Upper Sidironero Complex ∼ 500 m SE of the Gorgona Village, north of Xanthi town. It is composed primarily of coarse grained (3–20 mm in size) olivine and orthopyroxene, medium grained clinohumite and medium to fine grained tremolite, chlorite, dolomite, magnesite, talc, antigorite and various spinel phases. Whole-rock chemistry, mineral textures and compositions, and phase diagram calculations show that the metaperidotite was subjected to a prograde HP metamorphism, isofacial with the surrounding migmatitic gneisses, metapelites and amphibolites. The prograde character of metamorphism is demonstrated by inclusions of talc, antigorite, chlorite, dolomite, magnesite and Ti-clinohumite in ferrit-chromite, olivine, and orthopyroxene, as well as of olivine in orthopyroxene, and by the typical change in composition of zoned spinel minerals from ferrit-chromite in the core to chromian spinel at the rim. The prograde path is characterized by successive growth of amphibole, Ti-clinohumite, olivine and orthopyroxene, followed by the breakdown of Ti-clinohumite to olivine + Mg-ilmenite and of chlorite to olivine + spinel, probably during exhumation. The construction of a partial petrogenetic P– T grid in the system CaO–MgO–Al 2O 3–SiO 2–CO 2–H 2O (CMASCH) for Ca-poor ultramafic bulk compositions has proven highly useful for the reconstruction of the metamorphic evolution and a P– T path, indicating that the use of univariant reactions in mixed volatile systems is highly warranted. The P– T path is clearly constrained to pressures below 1.5–1.7 GPa by the absence of clinopyroxene. These pressures are slightly lower than those recorded in the closely associated Jurassic eclogites and much lower than those recorded in the diamond-bearing gneisses 5 km to the south in the same tectonic unit. The carbonate-bearing metaperidotite from Gorgona probably represents a fragment of the hydrated mantle wedge. This is indicated by the REE compositions which differ from those of ophiolitic peridotites and resemble those of spinel or garnet peridotites of sub-continental origin. The ultramafic slice was incorporated tectonically into the subduction channel, most likely by tectonic erosion in the Early Jurassic, but did not experience ultrahigh-pressure metamorphism like the nearby metapelites that exhumed along the same subduction channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.