Abstract
In this paper, we present the development of submillimeter-wave monolithic integrated circuits (S-MMICs) and modules for use in next-generation sensors and high-data-rate wireless communication systems, operating in the 300-500-GHz frequency regime. A four-stage 460-GHz amplifier MMIC and a 440-GHz class-B frequency doubler circuit have been successfully realized using our 35-nm InAlAs/InGaAs-based metamorphic high-electron mobility transistor (mHEMT) technology in combination with grounded coplanar circuit topology (GCPW). Additionally, a 500-GHz amplifier MMIC was fabricated using a more advanced 20-nm mHEMT technology. To package the submillimeter-wave circuits, a set of waveguide-to-microstrip transitions has been fabricated on both 50-μm-thick quartz and GaAs substrates, covering the frequency range between 220 and 500 GHz. The E-plane probes were integrated in a four-stage 20-nm cascode amplifier circuit to realize a full <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> -band (220 to 325 GHz) S-MMIC amplifier module with monolithically integrated waveguide transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.