Abstract

Abstract— The thermal metamorphism grade of organic matter (OM) trapped in 6 unequilibrated ordinary chondrites (UOCs) (Semarkona [LL 3.0], Bishunpur [L/LL 3.1], Krymka [LL 3.1], Chainpur [LL 3.4], Inman [L/LL 3.4], and Tieschitz [H/L 3.6]) has been investigated with Raman spectroscopy in the region of the first‐order carbon bands. The carbonaceous chondrite Renazzo (CR2) was also investigated and used as a reference object for comparison, owing to the fact that previous studies pointed to the OM in this meteorite as being the most pristine among all chondrites. The results show that the OM thermal metamorphic grade: 1) follows the hierarchy Renazzo << Semarkona << other UOCs; 2) is well correlated to the petrographic type of the studied objects; and 3) is also well correlated with the isotopic enrichment δ15N. These results are strikingly consistent with earlier cosmochemical studies, in particular, the scenario proposed by Alexander et al. (1998). Thermal metamorphism in the parent body appears as the main evolution process of OM in UOCs, demonstrating that nebular heating was extremely weak and that OM burial results in the destabilization of an initial isotopic composition with high δD and δ15N. Furthermore, the clear discrimination between Renazzo, Semarkona, and other UOCs shows: 1) Semarkona is a very peculiar UOC—by far the most pristine; and 2) Raman spectroscopy is a valid and valuable tool for deriving petrographic sub‐types (especially the low ones) that should be used in the future to complement current techniques. We compare our results with other current techniques, namely, induced thermo‐luminescence and opaques petrography. Other results have been obtained. First, humic coals are not strictly valid standard materials for meteoritic OM but are helpful in the study of evolutionary trends due to thermal metamorphism. Second, terrestrial weathering has a huge effect on OM structure, particularly in Inman, which is a find. Finally, the earlier statement that fine‐grained chondrule rims and matrix in Semarkona could be the source of smectite‐rich IDPs is not valid, given the different degree of structural order of their OM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.