Abstract

Swarm intelligence (SI) and evolutionary computation (EC) algorithms are often used to solve various optimization problems. SI and EC algorithms generally require a large number of fitness function evaluations (i.e., higher computational requirements) to obtain quality solutions. This requirement becomes more challenging when optimization problems are associated with computationally expensive analyses and/or simulation tasks. To tackle this issue, meta-modeling has shown successful results in improving computational efficiency by approximating the fitness or constraint functions of these complex optimization problems. Meta-modeling approaches typically use polynomial regression, kriging, radial basis function network, and support vector machines. Less attention has been given to the generalized regression neural network approach, and yet, it offers several advantages. Specifically, the model construction process does not require iterations. Its only one parameter is known to be less sensitive and usually requires less effort in selecting an optimal parameter. We use generalized regression neural network in this paper to construct meta-models and to approximate the fitness function in particle swarm optimization. To assess the performance and quality of these solutions, the proposed meta-modeling approach is tested on ten benchmark functions. The results are promising in terms of the solution quality and computational efficiency, especially when compared against the results of particle swarm optimization without meta-modeling and several other meta-modeling methods in previously published literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.