Abstract

The use of approximation models in multiobjective optimization problems that involve expensive analysis and simulation processes such as multi-physics modeling and simulation, finite element analysis (FEA) and computational fluid dynamics (CFD) has become more popular and more attractive, especially for the optimization of complex mechatronics systems. Approximation models have been found as a promising tool for multiobjective optimization problems due to their capability for providing accurate modeling results with much less computations for intensive computation problems. Many present global optimization search techniques involve fitness evaluations that are expensive to perform, even worse for problems with multiple objective black-box functions evaluations. In this work, a new adaptive multiobjective optimization approach based metamodeling (AMOP) techniques is introduced. The approach can identify the Pareto front for multiobjective optimization problems efficiently with high accuracy. The computation cost associated with identifying the Pareto front for expensive black-box functions is reduced. The new search method was tested using benchmark test problems and mechatronics device design examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.