Abstract

This research presents a systematization and effectiveness approach in promoting the performance of the power density of a Proton Exchange Membrane Fuel Cell (PEMFC) by Metamodel-Based Design Optimization (MBDO). The proposed methodology of MBDO combines the design of experiment (DoE), metamodeling choice and global optimization. The fractional factorial experimental design method can screen important factors and the interaction effects in DoE, and obtain optimal design of the robust performance parameters by Taguchi method. Metamodeling then adopts the ability to establish a non-linear model of a complex PEMFC system configuration of an artificial neural network (ANN) based on the back-propagation network (BPN). Finally, on the many parameters (factors) of optimization, a genetic algorithm (GA) with a high capability for global optimization is used to search the best combination of the parameters to meet the requirement of the quality characteristics. Experimental results confirmed by the test equipment demonstrate that the MBDO approach is effective and systematic in promoting PEMFC performance of power density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.