Abstract

From a very general point of view, optimization involves numerous calculations and therefore a high computational cost. In the fields where a single calculation is long and the optimization is crucial, specific techniques, devoted to this task, have been developed. First, the surrogate-based models are introduced and a short review of optimization in tribology is presented. The aim of the present work is to combine both. To demonstrate the power of the methodology on a lubricated bearing, the theoretical background is first outlined. Then, the two aforementioned processes are described: the construction of the surrogate, based on the Finite Element Method well-chosen computations, and the Multiobjective Optimization, thanks to a Nondominated Sorting Genetic Algorithm. Both are utilized on a connecting rod big-end bearing. As a result, the power loss and the functioning severity are simultaneously minimized upon a set of ten input parameters. The user is then provided with simple analytical expressions of the input variables, for which the bearing behavior is optimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call