Abstract
This paper describes an axiomatic theory BT, which is a suitable formal theory for developing constructive mathematics, due to its expressive language with countable number of set types and its constructive properties such as the existence and disjunction properties, and consistency with the formal Church thesis. BT has a predicative comprehension axiom and usual combinatorial operations. BT has intuitionistic logic and is consistent with classical logic. BT is mutually interpretable with a so called theory of arithmetical truth PATr and with a second-order arithmetic SA that contains infinitely many sorts of sets of natural numbers. We compare BT with some standard second-order arithmetics and investigate the proof-theoretical strengths of fragments of BT, PATr and SA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.