Abstract

In this work, we present a single low-profile metamaterial that provides bandgaps of acoustic and elastic waves at the same time. This was done by ensuring impedance mismatch in two different domains, the fluid domain where the acoustic waves propagate and the solid domain where the elastic waves propagate. Through creatively designing the metamaterial, waves of certain nature and frequencies of interest were completely blocked in the solid and fluid domains simultaneously. The simulation results showed bandgaps with acoustic waves attenuation below 5 kHz and elastic waves attenuation below 10 kHz. The acoustic and elastic dispersion curves of the metamaterials were calculated for various designs with various diameters and neck lengths, and the bandgaps were calculated. These parameters can be used as means for tuning both the acoustic and elastic bandgaps. A representative design of the metamaterial was manufactured on a laser powder bed fusion system and the dynamic performance was measured at various points. The measurements were carried out using a dynamic shaker setup and the dynamic performance was in good agreement with the numerical modelling results. Such metamaterials can be used for simultaneous acoustic and elastic attenuation, as well as saving in space and material consumption, in various fields including building construction, automobile, aerospace and rocket design.

Highlights

  • In this work, we present a single low-profile metamaterial that provides bandgaps of acoustic and elastic waves at the same time

  • The acoustic bandgaps are formed by acoustic waves; these waves are oscillations of pressure travelling through a fluid

  • The elastic bandgaps are formed by elastic waves; these waves are formed by disturbances travelling through a solid

Read more

Summary

Introduction

We present a single low-profile metamaterial that provides bandgaps of acoustic and elastic waves at the same time. We present a cubic metamaterial design inspired by the Primitive form of the TPMS lattice, featured in various mechanical and vibration w­ ork[15,24,25,26], with verified acoustic and elastic bandgaps.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.