Abstract

In this paper, a coherent boundary value problem to model metamaterials' behaviour based on the relaxed micromorphic model is established. This boundary value problem includes well-posed boundary conditions, thus disclosing the possibility of exploring the scattering patterns of finite-size metamaterial specimens. Thanks to the simplified model's structure (few frequency- and angle-independent parameters), we are able to unveil the scattering metamaterial's response for a wide range of frequencies and angles of propagation of the incident wave. These results are an important stepping stone towards the conception of more complex large-scale meta-structures that can control elastic waves and recover energy. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call