Abstract

This paper reports on preliminary yet consistent studies and results around the concept of meta-material applied to the protection of buried gas transmission pipelines. The capacity of the proposed meta-material layout in attenuating and dissipating the energy induced by a surface explosion is described in general terms, and then it is examined for a set of nine realistic cases. The formulation of the band gaps, which are considered zones of mitigation for the incident waves of certain frequencies, composes the core of the analysis. For the calculation of the band gaps that target a specific range of frequencies, the 1D periodic structures’ theory is adopted, and the results have been verified numerically via COMSOL. The layout is tested for nine cases of surface explosions via finite element analyses in ABAQUS, using the CONWEP model for simulating the surface explosions. Extremely satisfying results are demonstrated regarding the reduction in the vertical and horizontal displacements of the buried steel pipe. The outer goal of the present study is to spotlight the implementation of meta-material concepts for the efficient blast protection of underground structures, addressing a major hazard for this type of structure and a gap in the current literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.