Abstract
Metal-halide perovskites are rapidly emerging as solution-processable optical materials for light-emitting applications. Here, we adopt a plasmonic metamaterial approach to enhance photoluminescence emission and extraction of methylammonium lead iodide (MAPbI3) thin films based on the Purcell effect. We show that hybridization of the active metal-halide film with resonant nanoscale sized slits carved into a gold film can yield more than 1 order of magnitude enhancement of luminescence intensity and nearly 3-fold reduction of luminescence lifetime corresponding to a Purcell enhancement factor of more than 300. These results show the effectiveness of resonant nanostructures in controlling metal-halide perovskite light emission properties over a tunable spectral range, a viable approach toward highly efficient perovskite light-emitting devices and single-photon emitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.