Abstract
This paper presents a new class of metamaterial beams of tunable and multi-band vibration absorption. The metamaterial beam is composed of uniform and periodic beam cells with locally resonant substructure called dual-action vibration absorber, DA. A DA vibration absorber comprising of three locally resonant subsystems, 3-DOF spring-mass-damper subsystems, is utilized to generate frequency stopbands to stop elastic wave propagation. The governing equations of motion for a periodic beam cell are derived. Several distinct mass and stiffness configurations for the metamaterial beam with DA vibration absorber are proposed. The dispersion relations and presence of three frequency stopbands are studied. A finite element method based on Timoshenko beam theory is used to model and analyze the introduced metamaterial beam with DA vibration absorber. The frequency response simulations agree well with the projected stopbands of the developed dispersion relations of the mass and stiffness configurations. The concept of the presented metamaterial beam with tunable and multi-stopbands is promising for wave propagation attenuation and control applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.