Abstract

BackgroundWith the advent of the age of big data in bioinformatics, large volumes of data and high-performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever more studies imply the microbiome in both normal human physiology and a wide range of diseases. RNA sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene expression patterns under defined conditions, including human disease-related contexts; however, its generic nature also enables the detection of microbial and viral transcripts.FindingsWe developed a bioinformatic pipeline to screen existing human RNA-seq datasets for the presence of microbial and viral reads by re-inspecting the non-human-mapping read fraction. We validated this approach by recapitulating outcomes from six independent, controlled infection experiments of cell line models and compared them with an alternative metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes of publicly available raw RNA-seq data from more than 17,000 samples from more than 400 studies relevant to human disease using state-of-the-art high-performance computing systems. The resulting data from this large-scale re-analysis are made available in the presented MetaMap resource.ConclusionsOur results demonstrate that common human RNA-seq data, including those archived in public repositories, might contain valuable information to correlate microbial and viral detection patterns with diverse diseases. The presented MetaMap database thus provides a rich resource for hypothesis generation toward the role of the microbiome in human disease. Additionally, codes to process new datasets and perform statistical analyses are made available.

Highlights

  • With the advent of the age of big data in bioinformatics, large volumes of data and high performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale

  • Our results demonstrate that common human RNA sequencing technology (RNA-seq) data, including those archived in public repositories, might contain valuable information to correlate microbial and viral detection patterns with diverse diseases

  • The presented MetaMap database provides a rich resource for hypothesis generation towards the role of the microbiome in human disease

Read more

Summary

Introduction

With the advent of the age of big data in bioinformatics, large volumes of data and high performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever more studies imply the microbiome in both normal human physiology and a wide range of diseases. RNA sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene expression patterns under defined conditions, including human disease-related contexts, but its generic nature enables the detection of microbial and viral transcripts

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.