Abstract

PurposeHuman bronchial smooth muscle cells (BSMCs) contribute to airway obstruction and hyperresponsiveness in patients with bronchial asthma. BSMCs also generate cytokines and matricellular proteins in response to extracellular acidification through the ovarian cancer G protein-coupled receptor 1 (OGR1). Cobalt (Co) and nickel (Ni) are occupational agents, which cause occupational asthma. We examined the effects of Co and Ni on interleukin-6 (IL-6) secretion by human BSMCs because these metals may act as ligands of OGR1.MethodsHuman BSMCs were incubated in Dulbecco’s Modified Eagle Medium (DMEM) containing 0.1% bovine serum albumin (BSA) (0.1% BSA-DMEM) for 16 hours and stimulated for the indicated time by exchanging the medium with 0.1% BSA-DMEM containing any of the metals or pH-adjusted 0.1% BSA-DMEM. IL-6 mRNA expression was quantified via reverse transcription polymerase chain reaction (RT-PCR) using the real-time TaqMan technology. IL-6 was measured using an enzyme-linked immunosorbent assay. Dexamethasone (DEX) was added 30 minutes before each stimulation. To knock down the expression of OGR1 in BSMCs, small interfering RNA (siRNA) targeting OGR1 (OGR1-siRNA) was transfected to the cells and non-targeting siRNA (NT-siRNA) was used as a control.ResultsCo and Ni both significantly increased IL-6 secretion in human BSMCs at 300 μM. This significant increase in IL-6 mRNA expression was observed 5 hours after stimulation. BSMCs transfected with OGR1-siRNA produced less IL-6 than BSMCs transfected with NT-siRNA in response to either Co or Ni stimulation. DEX inhibited Co- and Ni-stimulated IL-6 secretion by human BSMCs as well as pH 6.3-stimulated IL-6 secretion in a dose-dependent manner. DEX did not decrease phosphorylation of ERK1/2, p38 MAP kinase, and NF-κB p65 induced by either Co or Ni stimulation.ConclusionCo and Ni induce secretion of IL-6 in human BSMCs through activation of OGR1. Co- and Ni-stimulated IL-6 secretion is inhibited by DEX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.