Abstract

The rTCA cycle (also known as the reverse Krebs cycle) is a central anabolic biochemical pathway whose origins are proposed to trace back to geochemistry, long before the advent of enzymes, RNA or cells, and whose imprint still remains intimately embedded in the structure of core metabolism. If it existed, a primordial version of the rTCA cycle would necessarily have been catalyzed by naturally occurring minerals at the earliest stage of the transition from geochemistry to biochemistry. Here we report non-enzymatic promotion of multiple reactions of the rTCA cycle in consecutive sequence, whereby 6 of its 11 reactions are promoted by Zn2+, Cr3+ and Fe0 in an acidic aqueous solution. Two distinct three-reaction sequences can be achieved under a common set of conditions. Selectivity is observed for reduction reactions producing rTCA cycle intermediates compared to those leading off-cycle. Reductive amination of ketoacids to furnish amino acids is observed under similar conditions. The emerging reaction network supports the feasibility of primitive anabolism in an acidic, metal-rich reducing environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.