Abstract

Staphylococcus aureus (S. aureus), one of the Gram-positive bacteria, is easily to develop drug-resistance. Drug-resistant S. aureus infection leads to high morbidity and mortality. The complexes, namely [Ru(dpa)2(PSPIP)](PF6)2 (Ru1), [Ru(dpa)2(TSPIP)](PF6)2 (Ru2), and [Ru(dpa)2(TBPIP)](PF6)2 (Ru3), were synthesized using 2, 2′-dipyridylamine as an auxiliary ligand and three main ligands PSPIP, TSPIP, TBPIP. In vitro studies demonstrated that the Ru1–3 exhibited excellent antibacterial activity against S. aureus while showing low hemolytic toxicity to rabbit red blood cells. Notably, Ru3 was found to disrupt the bacterial cell membrane and alter its permeability through fluorescence staining and scanning electron microscopy (SEM) analysis. Furthermore, Ru3 displayed low toxicity in G. mellonella Larvae. Ru3 exhibited good activity against S. aureus in G. mellonella Larvae infection model and mouse skin infection model.To some extent, Ru3 inhibited biofilm formation on S. aureus as well as hemolytic toxin production, thereby attenuating the development of drug resistance without cross-resistance with other antibiotics. In addition, complex Ru3 exhibited a synergistic effect when combined with antibiotics amikacin, kanamycin, tobramycin and chloramphenicol, making it a valuable antibiotics adjuvant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.