Abstract

The growth characteristics and crystalline quality of thick (100) CdTe-epitaxial layers grown on (100) GaAs and (100) GaAs/Si substrates in a metal-organic vapor-phase epitaxy (MOVPE) system for possible applications in x-ray imaging detectors were investigated. High-crystalline-quality epitaxial layers of thickness greater than 100 µm could be readily obtained on both types of substrates. The full width at half maximum (FWHM) values of the x-ray double-crystal rocking curve (DCRC) decreased rapidly with increasing layer thickness, and remained around 50–70 arcsec for layers thicker than 30 µm on both types of substrates. Photoluminescence (PL) measurement showed high-intensity excitonic emission with very small defect-related peaks from both types of epilayers. Stress analysis carried out by performing PL as a function of layer thickness showed the layers were strained and a small amount of residual stress, compressive in CdTe/GaAs and tensile in CdTe/GaAs/Si, remained even in the thick layers. Furthermore, the resistivity of the layers on the GaAs substrate was found to be lower than that of layers on GaAs/Si possibly because of the difference of the activation of incorporated impurity from the substrates because of the different kinds of stress existing on them. A heterojunction diode was then fabricated by growing a CdTe epilayer on an n+-GaAs substrate, which exhibited a good rectification property with a low value of reverse-bias leakage current even at high applied biases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.