Abstract

Effective treatment of emerging organic contaminants (EOCs) is a key concern for human beings. Advanced oxidation processes (AOPs) have become one of the core techniques of EOCs removal because of the high oxidation efficiency, complete mineralization, and controllable process. Sulfate radicals-based AOPs overcome the shortcomings of conventional Fenton processes. The development of efficient catalysts is major limitation of sulfate radicals-based AOPs for EOCs removal from wastewater. Metal organic framework (MOFs) receives growing global attention due to excellent properties of large surface area, flexible synthesis methods, and modifiable structure. Numerous researches have been conducted to fabricate MOFs-based catalysts. Herein, studies on MOFs-based materials as catalysts for catalytic removal of EOCs were summarized. The synthesis methods of MOFs were briefly described. Researches on MOFs materials as persulfate activators were reviewed from the perspective of Fenton-like and photo-Fenton system. Additionally, the effects of process factors including catalyst dosage, persulfate concentration, solution pH, coexisting inorganic anions, natural organic matter, and temperature on the catalytic efficiency were systematically summarized. Finally, the stability and toxicity of MOFs-based catalysts that affect the practical application was discussed. This work provides better understanding of sulfate radicals-based AOPs using MOFs-based catalysts for EOCs removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.