Abstract

Metal-organic frameworks (MOFs) show great promise for electrochemical energy storage applications due to their high surface area, tunable porosity, ordered crystal structure, and facile tolerability. However, some MOFs with high electrochemical performance are usually unstable in aqueous solutions, which limits their development in aqueous electrochemical energy storage systems, which are cheaper, safer, and more ionically conductive than those operating in conventional organic electrolytes. Numerous efforts have been made to construct stable MOFs or control MOF derivation processes induced by chemical or thermal forces to optimize their properties and performance. Therefore, a review summarizing the MOFs applied in aqueous electrochemical energy storage devices would be useful. In this review, the chemical stability and thermal stability of MOFs under aqueous conditions are discussed. The evolution processes of MOFs when they exceed their stability are summarized. Furthermore, the recent fast-growing literature on MOF-based aqueous ion batteries and supercapacitors is comprehensively reviewed, and guidelines for designing high-performance aqueous electrochemical devices are provided. The current challenges and opportunities for applying MOFs in aqueous electrochemical energy-storage devices are provided. We hope this review will promote the development of MOFs in aqueous electrochemical devices by exploiting the advantages and remedying the disadvantages of MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.